AIST & ESIP
New Observing
Strategies (NOS)

StereoBit: Advanced Onboard Science Data Processing to Enable Future Earth Science

Dr. Carr is a member of the TEMPO science team and a frequent collaborator with Code 600 and NOAA STAR in the area of atmospheric research. His training is in physics and he has played a lead role in weather satellite programs in the U.S. and internationally, including GOES-R and Meteosat.

Co-I: Chris Wilson (GSFC Institutional PI)

Dr. Wilson is an early-career computer engineering researcher in Code 587 specializing in high-performance and reconfigurable computing for space applications. Chris will lead the efforts of Code 587 in the execution of the AIST effort.

Co-I: Dong Wu

Dr. Wu is an atmospheric scientist with broad experience including MISR, CMIS (as Co-I), SORCE/TSIS, and microwave remote sensing. He is a collaborator with Dr. Carr on stereo 3D winds and author on several paper on the subject. Dong will provide scientific guidance for our AIST effort.

Co-I: Matthew French

Matthew French is a former 2x AIST PI. He provides continuity to earlier research efforts with SpaceCube hardware and is our lead SME for the Virtual Constellation Engine (VCE) and a High-Level Synthesis (HLS) SME.

Collaborator: Michael Kelly

Dr. Kelly is the CMIS PI and a collaborator with Dr. Wu and Dr. Carr on the development of stereo 3D-wind methods and mission concepts. The CMIS instrument is the model application for the application development to be pursued under this AIST award.

Advance Onboard Science Data Processing Capabilities within CubeSat Size Weight and Power: Develop a Specific Application for SpaceCube tied to High-Priority Decadal Survey Science

works over the Poles too

Project Technologies

SpaceCube Processor

- CPU and Reconfigurable Field Programmable Gate Arrays (FPGAs)
- Mini/Mini-Z: fits within **CubeSat Resource Limits**
- **ESTO Funded**

Compact Midwave IR Sensor (CMIS)

- Target for our science application
- Multi-angle push-broom with fore, nadir, aft views like MISR
- Type-2 Super Lattice (T2SL) detector
- **ESTO Instrument Incubator Program**

Field	Number
Multi- Spectral	2.25, 3.75, 4.05 μm
Multi-Angle	Fore, Nadir, Aft views at 3.75 µm
Weight, Power	3 kg, 7 W
Operating Temperature	150 K

Software & Synthesis

- NASA core Flight System (cFS)/core Flight Executive (cFE)
- Tools to synthesize FPGA logic from C/Python
- Virtual Constellation Engine (VCE) from AIST-16

"Fly" StereoBit at GSFC

Demonstration of a nearly Flight-Ready Application

Leader-Follower Configuration

Best Practices for Science Application Development on SpaceCube

